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Setting up a Multi-core  
Computing System for  

Cryptanalytic Problems  
and Evaluation of  

Password Cracking  
Algorithms

Zusammenfassung

Praktisch jeder Internetnutzer ist dazu gezwungen, 
täglich mit mehreren Passwörtern umzugehen. Diese 
sollten möglichst lange und wahllose Zeichenketten aus 
einem möglichst großen Zeichenvorrat sein (Groß- und 
Kleinbuchstaben, Ziffern und Sonderzeichen), die nicht in 
Wörterbüchern zu finden sind. Es ist praktisch unmöglich, 
sich die benötigte Anzahl von Passwörtern zu merken, die 
dann auch noch nach einigen Wochen oder Monaten durch 
neue zu ersetzen sind. Deshalb verwenden viele Internet-
nutzer auch heute noch einfache Passwörter oder noch 
schlimmer nur ein Passwort für verschiedene Dienste. 
Vor diesem Hintergrund wurde unter Verwendung einer 
Mehrkern-Spezial-Hardware untersucht, ob, wie und wie 
schnell Passwörter „geknackt“ werden können.

Abstract

Every internet user has to cope with a lot of different 
passwords every day. These passwords should be 
pseudorandom strings of a suitable length with letters 
chosen from a preferably large character set (upper-case 
and lower case characters, numerals and special 
characters) which do not belong to any dictionary. It is 
practically impossible to remember all these passwords 
that on top of this have to be replaced after a couple of 
weeks or months. That is the reason why many internet 
users even today use weak passwords or – even worse – 
just one password for multiple services. In this report we 
present the results of our evaluation of password cracking 
algorithms using a special multi-core hardware.

Introduction

Passwords are often the weakest link in a modern IT 
security environment. But often passwords are the 
only – or the most comfortable way to authenticate users 
or programs. The problem of authentication through a 
secret is that the user must know the secret. We already 
stressed that users usually have to remember a couple of 
different passwords and that it is hard to learn many 
passwords consisting of random characters.  
To compensate this people use passwords that are easy 
to remember. Of course, normally passwords are not 
stored as (readable) plain text today. And even during 
authentication the plain text of the passwords is not 
used – instead the hash value of the password comes into 
play which is the output of a cryptographically-secure 
hash function. A hash function maps any string of 
arbitrary length to a fixed-length output, say 512 bits, for 
example. A cryptographically-secure hash function needs 
to be a one-way function that is collision-resistant and 
second-preimage-resistant (cf. Menezes 1997).

If an attacker wants to intrude a system he always uses 
the easiest way – “the low-hanging fruits”. These 
“low-hanging fruits” are often passwords. If an attacker 
gets the password hashes, e. g. through SQL injection, 
leaks from other hackers, previous hacks etc., the only 
obstacle is to get the plain text passwords to the 
corresponding hash values.

For both sides in this scenario, the attacker as well as the 
target, it is important to know how to crack passwords 
and how long hash values can resist against attacks. In 
this report we focus on the following issues:
• Is it useful/possible to try all passwords of a given 

length (so called brute force attack)?
• Is it possible to exploit the missing entropy of user 

generated passwords?
• What is the fastest way to crack passwords?
• What is the best hardware to crack passwords (giving 

special attention to the Kalray MPPA 256 platform)?
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To answer these questions the first step is to look at 
different password cracking techniques and their 
efficiency. The next step is to calculate statistics of 
passwords and analyse them. Based on this analysis it is 
possible to develop different password cracking tools. In 
the last step the speed of password cracking will be 
compared on different hardware.

Basics about Multi-Core Systems

Principles of Multi-Core Processor

The main problem of single-core CPUs is, you can only run 
one thread at the same time. With scheduling you can run 
as many threads as you like but you can never run threads 
simultaneously. The scheduler gives every thread a short 
time slot and after this time the operating system (OS) 
stops the process and saves the state of the process. In 
the next step the scheduler loads and executes the next 
thread and so on (cf. Thies 2008, p. 1 et seqq.).
Multi-core processors consist of more than one CPU, so 
they can run multiple threads simultaneously. To make all 
of these cores work, this must be supported by the OS  
(so called multithreading) (cf. Thies 2008, p. 1 et seqq.).

The main difference between different multi-core 
processor designs is their link to the memory. The best 
known design is Multiple Instruction Multiple Data 
(MIMD). MIMD means that n processors can edit n data 
elements with n processes (cf. Beierlein 2011 see p. 53 et 
seq.).

Figure 1: Multi-Core

Figure 1 shows the structure of a multi-core CPU. Every 
single core is connected to a dedicated L1 (level 1) and L2 
(level 2) cache and a shared level 3 cache. The sizes of the 
caches increase from L1 to L3 but the access time 
decreases from L1 to L3. The cores use these caches to 
store data with highly frequented access  
(cf. Thomas Beierlein 2011, p. 530).

GPU vs. Multi-Core

Graphics Processing Units (GPUs) are designed for 
real-time rendering. Every GPU consists of several 
processors and every processor consists of several cores 

(cf. figure 2). The processors are optimised for massive 
parallel floating point operations. In favour of the number 
of cores, GPUs renounce branch predictors, more cache 
and Instruction-Level Parallelism (ILP).
 
There is a major difference between the core of a CPU and 
the core of a GPU: On a GPU every core in one processor 
executes the same program with different data (so called 
Single Program Multiple-Data, abbreviated SPMD). All 
instructions on the cores in one processor run 
synchronously. That is called Single-Instruction Multiple 
Threads (SIMT). In contrast to GPUs the CPU cores are 
more powerful and independent of the type of their task. 
This implies that GPUs are much more powerful than CPUs 
for tasks that one can parallelise well by executing the 
same program with multiple data. That is due to the much 
higher number of cores on the GPU in relation to a multi-
core processor. It must be kept in mind during the 
software development process that the execution time for 
“if else” instructions will be summed up, due to SIMT. 
Multi-core systems show their strength in this point. To 
put it in a nutshell: very complex programs run very fast 
on multi-core processors and program code with different 
threads runs very fast on CPUs (cf. Dinkla 2013, p. 136 et 
seqq.).

Figure 2: GPU

Kalray

Kalray is a French company which produces the “Multi-
Purpose Processor Array (MPPA) MANYCORE”. The 
corresponding developer station is called “MPPA 
Developer” (cf. Kalray 2012). At the Laboratory for Safe 
and Secure Systems (LaS³), at the OTH Amberg-Weiden as 
well as at the OTH Regensburg, this hardware is used for 
research topics concerning scheduling, multi-core 
programming, safety and security.

Architecture

The before mentioned developer station consists of:

1.  a MPPA-256 board,
2.  a trace and debug board,
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7.  an instruction and data L1-cache and
8.  500 MHz clock rate.

The picture below (figure 4) shows the disassembled 
MPPA-MANYCORE:

Figure 4: MPPA MANYCORE

Principles of Password Cracking

In order to learn password cracking it is necessary to 
understand what passwords are used for and how they 
are handled by computers.

Hash Function

Let X,Y be sets. A hash function maps data x∈X with 
arbitrary size to data y∈Y with a fixed size. These 
functions are called “one-way functions” because they 
are non-invertible.

f: X → Y

Since f maps a larger set to a smaller one, a hash function 
is not injective. This means that there exist different 
preimages that are mapped to the same hash value. Such 
a pair of different preimages is called a collision for the 

3.  a motherboard with host processor (i7) and DDR3-
Random-Access Memory (RAM),

4.  a 500Gb HDD,
5.  a special developer environment (MPPA ACCESSCORE 

Software Development Kit ) based on the Eclipse 
Integrated Development Environment (IDE) and 

6.  a Fedora 17 host OS.

The OS and the IDE run on the i7 processor. Only the 
programs developed for the MPPA-256 run dedicated on 
the MANYCORE-processor. Figure 3 shows an overview of 
the architecture. 

Figure 3: Kalray MPPA Developer

Two Peripheral Component Interconnect express (PCIe) 
GEN3 x8 interfaces combined by a x16 PCIe switch 
connect the MPPA-MANYCORE to the motherboard. For 
each PCIe x8 interface there is a dedicated quad-core 
processor on the MPPA-MANYCORE to handle the data 
transfer. Additionally, the MANYCORE is composed of 
16 computing cluster with a private Floating-Point Unit 
(FPU) and Memory Management Unit (MMU), a smart 
Direct Memory Access (DMA), an own memory and a 
debug support unit (cf. Kalray 2013).

Every computing cluster is composed of 16 cores with the 
following features (cf. Kalray 2013):

1.  one Branch/Control Unit,
2.  two Arithmetic Logic Units,
3.  one Load/Store Unit including simplified Arithmetic 

Logic Unit (ALU),
4.  one Multiply-Accumulate (MAC) / FPU including  

a simplified ALU,
5.  standard IEEE 754-2008 FPU with advanced Fused 

Multiply-Add (FMA) and dot product operators,
6.  one MMU,



50

password else the corresponding hash chain with x as 
input has to be built and every output must be compared 
with all saved values finaloutput. (cf. Hellmann 1980)

An optimisation of hash chains are the rainbow tables. 
Instead of calculating every chain with the same function 
R a set of t – 1 reducing functions will be used. This 
reduces the number of collisions in a table. With this 
algorithm it is only necessary to compare all finaloutput to 
detect collisions. Thus rainbow tables can be used to 
generate merge-free tables. This reduces the necessary 
storage and the computation time. (cf. Oechslin 2003)

Randomised Attacks on Passwords

The main disadvantage of rainbow tables is that they still 
require large amounts of data because there is no way to 
give distinct single values higher priorities. The needed 
storage grows exponentially with the maximum length of 
the passwords x. At the length of 9 characters for a 
password more than 1 petabyte is necessary to store the 
rainbow table which exceeds the capacity of state of the 
art computers. This is only for one salt. For every salt a 
new rainbow table has to be computed. Of course it is 
possible to compute longer chains to reduce the amount 
of memory but this would result in longer computation 
times. Since such amounts of storage are way too 
expensive and too much time is needed to compute these 
rainbow tables, a new approach is required. The following 
sections show some measures to reduce the memory 
needed. All of them exploit the low-entropy of passwords 
created by humans.

Dictionary Attacks

Dictionary attacks are similar to brute force attacks but do 
not try all possible combinations of characters. Only 
special words are used to crack passwords. The words are 
from dictionaries, plain text password lists, etc. This 
works because many people use the same password for 
different accounts and use words from dictionaries. 
According to Alleyne the English language contains about 
1,000,000 words (cf. Alleyne 2010). To give an impression 
of the computing power of a state of the art computer it 
must be stressed that with only one computer it is 
possible to crack a password consisting of one of these 
English words and hashed with Secure Hash Algorithm 
512 (cf. NIST 2015) in about 0.01s (cf. Hashcat 2013).

The downfall of this kind of attacks is that passwords 
which are not in the dictionary, cannot be cracked. If 
someone uses the same password with one different 
character for every account, the passwords are safe 
against this type of dictionary attacks. Another 
disadvantage is that dictionary cannot be stored as 
efficiently as rainbow tables. That strongly limits the 
maximum size of the dictionary (cf. Ziegler 2014,  
p. 22–25).

given hash function. For practical applications it must be 
unfeasible to find such collisions.

Password protection

To protect plaintext passwords against unauthorized 
access, these are always stored as hash values. To verify 
the user input for the password xʹ, the given input is 
hashed to yʹ and then compared with the saved password 
hash y.

Figure 5: Save and Verify Passwords

To increase the entropy of a password a random string will 
be added to the password and in the next step the 
password hash will be generated. The random string is 
called salt and will be saved in plain text with the 
password. This increases the time for precomputation of 
the password hashes. However, salts are meant to make 
brute force attacks much harder if not unfeasible.

Rainbow tables

The default attack against hashes is to compute many 
hashes and compare them with the target password hash. 
With “rainbow tables” it is not necessary to save all 
hashes with all plain texts.

The best practice to save memory is to compute hash 
chains. A hash chain is formed by computing the hash 
value of the input, reducing the output with the function 
and taking this value to repeat the procedure.

input → output → newinput → newoutput → ... 
 → finaloutput

Calculating this chain, it is only necessary to save the 
input and the finaloutput. To crack passwords one has to 
compute many chains. If one wants to retrieve a 
corresponding plaintext to password x, it is necessary to 
compare it with all finaloutput. If it matches, the 
corresponding plaintext is used to compute the final 

H R H R

R
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Real-world attacks against cryptographic hash 
functions

Optimized Code for Kalray

Two different programs, both running on the Kalray 
Developer platform, have been developed.

Password-List

The first program computes hash values based on a 
pre-defined list of passwords. To crack a password it is 
only necessary to compare the target hash with the 
computed list of hashed passwords. If there is a match, it 
allows to calculate the position of a corresponding plain 
text. The concept of this tool provides one program on the 
host processor with different threads to read and write a 
file from storage, one program on “PCI0” to handle data 
input from the cluster, one program on “PCI1” to handle 
data output from the cluster and one program that will be 
spawned on all 16 Cluster cores.

The read thread runs on the main CPU and reads data 
from the storage and sends them to PCI0. The write thread 
also runs on the main CPU and receives all data from the 
program that runs on PCI1 and writes them to the storage. 
This construct is necessary for fast handling a huge 
amount of passwords.

The two threads can alternatingly read and write data and 
between the read/write section they can send/receive 
data from the cluster. For this reason it is possible to get 
the maximum IO-speed concerning to the HDD bottleneck. 
To get the maximum speed between the main CPU and the 
cluster, the best way is to use both PCIe interfaces. So 
PCI0 is used to read data from read thread and pass them 
on to the cluster. PCI1 is used to read data from cluster 
and send them to the host.

Every cluster gets only a part of every data set. The 
cluster main cores split these parts of the data set and 
send them to every core. The single cores compute the 
result and if all clusters have finished, the result will be 
returned to PCI1. Figure 6 shows the sequence diagram of 
the data flow:

Markov chains

Markov Chains are used to describe a sequence of 
characters using a transition matrix P. With a list of plain 
text passwords it is possible to create a matrix P that 
contains the transition probability of every character from 
the list. Using the matrix P it is possible to create many 
passwords with a high probability.

Using Markov chains to describe passwords

The “RockYou” password list, which was used for our 
work, was chosen because it is the biggest password list 
that is publicly available (cf. Miessler 2013).

Let X be a set of passwords with cardinality |X | = N. If 
every user chose a random password of the set , it would 
make no sense to create a Markov chain because every 
symbol would occur with the probability of occurrence 
1/N and also every Markov property would be 1/N. 
Computing Markov chains only makes sense if the user 
does not choose actually random passwords. If Markov 
chains should be used for password cracking it is 
necessary to prove the lack of randomness for the 
considered passwords. We found out that based on a 
8-bit character map only 214 of 256 characters are picked 
for passwords by the users (so only about 80 %). 
Therefore the passwords cannot really be random. The 
probability of occurrence shows that from the set of used 
symbols only a small proportion appears regularly. This 
confirms the assumption that passwords are not randomly 
chosen because the picked characters are not uniformly 
distributed.

We found two big bursts, which correspond to the 
numerals 0…9 and the lower case letters a…z. The lower 
case letters are similarly distributed like they are in 
English (cf. Bauer, p. 304). The reason is that the rockyou.
com website is an English one with mainly English-
speaking visitors. The rest of the characters are not 
similar to the English language.

To give a résumé: passwords are not uniformly distributed 
and they are not based solely on a language. Therefore, 
there are passwords that occur with a higher probability 
than others. These passwords can be described using 
Markov chains.

We also found out that the Markov chains differ for 
different password lengths. That is why it seems 
reasonable to compute different Markov chains for 
different password lengths. Finally, Markov chains differ 
between position transitions. But this effect decreases 
with the size of passwords.
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Markov-Cracker

This Application is based on the findings of section “Using 
Markov chains to describe passwords”.
Markov-Cracker works with Markov chains for every 
password length. Markov chains are used to describe the 
probabilities of transitions between characters and their 
subsequent characters. A list of start values is needed for 
every password length. The input data must be saved in 
Octave’s text data format. This format allows it to easily 
manipulate or to create input data with Octave or MATLAB 
respectively.

This algorithm does not depend on the hash algorithm. 
The output of the application is only on the system 
console and shows the target hash and a corresponding 
plain text password.

Markov-Cracker starts with the shortest password size 
and loads the necessary data to the cores. The passwords 
are created on the fly on the cores based on the Markov 
chains. Due to load balancing aspects, the PCI-OS sends 
only one start value to every cluster. If one cluster has 
finished, the PCI-OS will send the next one. The start 
values will be distributed in descending order of 
probability. On the cluster every single core gets the start 
value from the PCI-OS and gets a unique character which 
is calculated with the start value and the first Markov 
chain. Based on these values, every core iterates the 
following characters according to the Markov chains. For 
every iteration the corresponding hash is calculated and 
compared to the target passwords. If one hash is equal to 
a target password hash, then a corresponding plain text 
password and the hash will be printed on the system 
console, else a new password will be iterated. The 
iteration starts with the most probable character and ends 
with the least probable character. This probability-
depending order and load balancing ensure that every 
core is busy and computes the passwords with the 
highest probability first.

The performance of the program is again measured in   

The time starts with reading the first password and stops 
with finishing writing. The code is completely written in 
“C” and compiled with the GNU Compiler Collection (GCC) 
with optimization level 3 (-O3).

MD5 crypt_SHA512

kH/s ~ 132864.0 ~ 2.8

In comparison to the first program, this one uses less 
memory. Only the size for the Markov chains and the start 
values are necessary. Another advantage is that the 
passwords only exist on the cores and it is not necessary 

KiloHash
seconds

Figure 6: Sequence diagram

The architecture of the program does not depend on the 
password hash algorithm. There are two implementations, 
one for MD5 (cf. Rivest 1992) as a “best-case”1 example, 
based on the short runtime. The other one uses crypt, the 
default hashing routine for Linux operating systems, with 
SHA512 as a real world example. crypt is also a “worst-
case” scenario because it is very time-intensive.

The performance of those two applications is measured in  

The time starts with reading the first password and stops 
with finishing writing. The code is written in “C” and 
compiled using the GNU Compiler Collection (GCC)2 with 
optimization level 3 (-O3). The table below shows the 
average computing performance of the Kalray Developer 
platform.

MD5 crypt_SHA512

kH/s ~ 1593.3 ~ 2.8

The pros of the application are: The architecture of this 
application is not depending on the hash algorithm or the 
input data. It is possible to work with big password lists 
(bigger than the size of RAM). It is possible to pre- 
compute lists of hashed passwords to attack multiple 
passwords with the same salt.

The cons of this application are: This kind of computing 
password hashes works much faster on GPUs. This is due 
to the greater number of cores on a GPU and the fact that 
disadvantages like SIMT and SPMD of the GPU do not 
affect the result. The applications execute the same code 
on every core and only the input differs (correspond to 
SPMD) and the code does not contain jumps that are not 
simultaneously on every core (correspond to SIMT). 
Another disadvantage are the read- and write instructions 
on the host system which are time-intensive. The reason 
is that the data must be transferred to the cluster over 
two more OSs3. This is a very time-intensive process.

KiloHash
seconds
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target does not use a high probability (and therefore 
weak) password. 

Brute force attacks against passwords with characters 
picked from a large set of characters are too time-
intensive. Rainbow tables are much faster than brute force 
attacks but these kinds of attacks is too slow and too 
memory-intensive as well. These attacks are outdated for 
passwords generated by humans. This is shown by 
current projects like Hashcat4 or John the Ripper5 which do 
not support rainbow tables.

Attacks based on password statistics are much faster 
because they only use relevant passwords. Attacks based 
on Markov chains do not need much memory and they are 
very effective against the most common passwords. 
Password lists can be used to iterate personal information 
or the top 1000 of the most frequently used passwords. If 
the password is random and the characters uniformly 
distributed, only rainbow tables or brute force attacks are 
possible. Unfortunately, people still are too careless with 
their passwords and that is why attacks like those based 
on Markov chains are more often successful than not.

To practically crack passwords, powerful hardware is 
necessary. GPUs are state of the art for password 
cracking, they allow massive parallelisation and speed up 
the hash calculation. Also hash algorithms with high 
memory usage like scrypt are no problem, because 
modern GPUs have much memory with high bandwidth 
(GDDR5, HBM). If hash functions become more complex, 
multi-core CPU might come more into consideration, but 
today multi-core CPUs are of less importance regarding 
password cracking. The number of cores (256) of the 
multi-core MPPA-256 is too low and they are also clocked 
with a low clock rate (400 MHz). In comparison a GPU 
Radeon HD 6950 (AMD) has 1408 streaming processing 
units (one core on a GPU) distributed (divided) on 
22 processors, and a GPU clock speed of 810 MHz.  
The difference between the benchmarks of MPPA 256 and 
a benchmark with oclHashcat shows the performance 
difference. MD5 is approximately 2600 % faster on a GPU 
with oclHashcat than on MPPA-256 with Markov-Cracker 
and SHA512-crypt is about 600 % faster on a GPU. 

to transfer or save them. Finally, the most probability 
passwords are tested first.

A disadvantage is that Markov chains make only sense 
with not random, uniform distributed passwords. Also  
a negative aspect is that it is not possible to try specific 
words as a password, for example words which describe 
the personal background of the target user (and in this 
way using hints gained from social engineering).

Comparison

The main difference between Password-List and Markov-
Cracker is the performance. Cracking MD5 is 82 % faster 
with Markov-Cracker than with Password-List. This is 
based on the fact that cracking on MPPA Developer is only 
limited through the number of available passwords per 
time. Markov-Cracker creates with iteration of Markov 
chains much more passwords per time than Password-List 
can load from the host storage. The performance 
difference between the two applications for 
crypt_ SHA512 is vanishingly small. That is because 
cracking crypt_SHA512 is limited by the CPU performance 
and the password rate is irrelevant.

Markov-Cracker is the more powerful tool, based on the 
performance and the flexibility of the Markov-Chains. 
Password-List has one use case if personal information 
about the target are available from social engineering etc. 
which might have been used in its passwords. It is 
possible to try only this information.

Conclusion

Functions which create password hashes must be more 
than simple one-way functions with a high collision 
resistance. They must defy attacks using huge amount of 
available memory and massive parallelisation.  Scrypt, for 
example, increases the cost of password cracking with 
high memory usage (cf. Percival 2012). To increase the 
computation time, the password will be hashed several 
times. Another way to increase the computation time is to 
salt every password, it makes rainbow tables senseless. 
These techniques make an attacker’s job to crack the 
passwords much harder, but unfortunately only if the 

Endnotes

1. From the Crackers point of view

2. https://gcc.gnu.org/

3. One on the processor behind the interface and the other on the Cluster

4. https://hashcat.net

5. http://www.openwall.com/john/
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