
47

Setting up a Multi-core
Computing System for

Cryptanalytic Problems
and Evaluation of

Password Cracking
Algorithms

Zusammenfassung

Praktisch jeder Internetnutzer ist dazu gezwungen,
täglich mit mehreren Passwörtern umzugehen. Diese
sollten möglichst lange und wahllose Zeichenketten aus
einem möglichst großen Zeichenvorrat sein (Groß- und
Kleinbuchstaben, Ziffern und Sonderzeichen), die nicht in
Wörterbüchern zu finden sind. Es ist praktisch unmöglich,
sich die benötigte Anzahl von Passwörtern zu merken, die
dann auch noch nach einigen Wochen oder Monaten durch
neue zu ersetzen sind. Deshalb verwenden viele Internet-
nutzer auch heute noch einfache Passwörter oder noch
schlimmer nur ein Passwort für verschiedene Dienste.
Vor diesem Hintergrund wurde unter Verwendung einer
Mehrkern-Spezial-Hardware untersucht, ob, wie und wie
schnell Passwörter „geknackt“ werden können.

Abstract

Every internet user has to cope with a lot of different
passwords every day. These passwords should be
pseudorandom strings of a suitable length with letters
chosen from a preferably large character set (upper-case
and lower case characters, numerals and special
characters) which do not belong to any dictionary. It is
practically impossible to remember all these passwords
that on top of this have to be replaced after a couple of
weeks or months. That is the reason why many internet
users even today use weak passwords or – even worse –
just one password for multiple services. In this report we
present the results of our evaluation of password cracking
algorithms using a special multi-core hardware.

Introduction

Passwords are often the weakest link in a modern IT
security environment. But often passwords are the
only – or the most comfortable way to authenticate users
or programs. The problem of authentication through a
secret is that the user must know the secret. We already
stressed that users usually have to remember a couple of
different passwords and that it is hard to learn many
passwords consisting of random characters.
To compensate this people use passwords that are easy
to remember. Of course, normally passwords are not
stored as (readable) plain text today. And even during
authentication the plain text of the passwords is not
used – instead the hash value of the password comes into
play which is the output of a cryptographically-secure
hash function. A hash function maps any string of
arbitrary length to a fixed-length output, say 512 bits, for
example. A cryptographically-secure hash function needs
to be a one-way function that is collision-resistant and
second-preimage-resistant (cf. Menezes 1997).

If an attacker wants to intrude a system he always uses
the easiest way – “the low-hanging fruits”. These
“low-hanging fruits” are often passwords. If an attacker
gets the password hashes, e. g. through SQL injection,
leaks from other hackers, previous hacks etc., the only
obstacle is to get the plain text passwords to the
corresponding hash values.

For both sides in this scenario, the attacker as well as the
target, it is important to know how to crack passwords
and how long hash values can resist against attacks. In
this report we focus on the following issues:
• Is it useful/possible to try all passwords of a given

length (so called brute force attack)?
• Is it possible to exploit the missing entropy of user

generated passwords?
• What is the fastest way to crack passwords?
• What is the best hardware to crack passwords (giving

special attention to the Kalray MPPA 256 platform)?

Tilo Fischer
Prof. Dr. Andreas Aßmuth

48

To answer these questions the first step is to look at
different password cracking techniques and their
efficiency. The next step is to calculate statistics of
passwords and analyse them. Based on this analysis it is
possible to develop different password cracking tools. In
the last step the speed of password cracking will be
compared on different hardware.

Basics about Multi-Core Systems

Principles of Multi-Core Processor

The main problem of single-core CPUs is, you can only run
one thread at the same time. With scheduling you can run
as many threads as you like but you can never run threads
simultaneously. The scheduler gives every thread a short
time slot and after this time the operating system (OS)
stops the process and saves the state of the process. In
the next step the scheduler loads and executes the next
thread and so on (cf. Thies 2008, p. 1 et seqq.).
Multi-core processors consist of more than one CPU, so
they can run multiple threads simultaneously. To make all
of these cores work, this must be supported by the OS
(so called multithreading) (cf. Thies 2008, p. 1 et seqq.).

The main difference between different multi-core
processor designs is their link to the memory. The best
known design is Multiple Instruction Multiple Data
(MIMD). MIMD means that n processors can edit n data
elements with n processes (cf. Beierlein 2011 see p. 53 et
seq.).

Figure 1: Multi-Core

Figure 1 shows the structure of a multi-core CPU. Every
single core is connected to a dedicated L1 (level 1) and L2
(level 2) cache and a shared level 3 cache. The sizes of the
caches increase from L1 to L3 but the access time
decreases from L1 to L3. The cores use these caches to
store data with highly frequented access
(cf. Thomas Beierlein 2011, p. 530).

GPU vs. Multi-Core

Graphics Processing Units (GPUs) are designed for
real-time rendering. Every GPU consists of several
processors and every processor consists of several cores

(cf. figure 2). The processors are optimised for massive
parallel floating point operations. In favour of the number
of cores, GPUs renounce branch predictors, more cache
and Instruction-Level Parallelism (ILP).

There is a major difference between the core of a CPU and
the core of a GPU: On a GPU every core in one processor
executes the same program with different data (so called
Single Program Multiple-Data, abbreviated SPMD). All
instructions on the cores in one processor run
synchronously. That is called Single-Instruction Multiple
Threads (SIMT). In contrast to GPUs the CPU cores are
more powerful and independent of the type of their task.
This implies that GPUs are much more powerful than CPUs
for tasks that one can parallelise well by executing the
same program with multiple data. That is due to the much
higher number of cores on the GPU in relation to a multi-
core processor. It must be kept in mind during the
software development process that the execution time for
“if else” instructions will be summed up, due to SIMT.
Multi-core systems show their strength in this point. To
put it in a nutshell: very complex programs run very fast
on multi-core processors and program code with different
threads runs very fast on CPUs (cf. Dinkla 2013, p. 136 et
seqq.).

Figure 2: GPU

Kalray

Kalray is a French company which produces the “Multi-
Purpose Processor Array (MPPA) MANYCORE”. The
corresponding developer station is called “MPPA
Developer” (cf. Kalray 2012). At the Laboratory for Safe
and Secure Systems (LaS³), at the OTH Amberg-Weiden as
well as at the OTH Regensburg, this hardware is used for
research topics concerning scheduling, multi-core
programming, safety and security.

Architecture

The before mentioned developer station consists of:

1. a MPPA-256 board,
2. a trace and debug board,

49

7. an instruction and data L1-cache and
8. 500 MHz clock rate.

The picture below (figure 4) shows the disassembled
MPPA-MANYCORE:

Figure 4: MPPA MANYCORE

Principles of Password Cracking

In order to learn password cracking it is necessary to
understand what passwords are used for and how they
are handled by computers.

Hash Function

Let X,Y be sets. A hash function maps data x∈X with
arbitrary size to data y∈Y with a fixed size. These
functions are called “one-way functions” because they
are non-invertible.

f: X → Y

Since f maps a larger set to a smaller one, a hash function
is not injective. This means that there exist different
preimages that are mapped to the same hash value. Such
a pair of different preimages is called a collision for the

3. a motherboard with host processor (i7) and DDR3-
Random-Access Memory (RAM),

4. a 500Gb HDD,
5. a special developer environment (MPPA ACCESSCORE

Software Development Kit) based on the Eclipse
Integrated Development Environment (IDE) and

6. a Fedora 17 host OS.

The OS and the IDE run on the i7 processor. Only the
programs developed for the MPPA-256 run dedicated on
the MANYCORE-processor. Figure 3 shows an overview of
the architecture.

Figure 3: Kalray MPPA Developer

Two Peripheral Component Interconnect express (PCIe)
GEN3 x8 interfaces combined by a x16 PCIe switch
connect the MPPA-MANYCORE to the motherboard. For
each PCIe x8 interface there is a dedicated quad-core
processor on the MPPA-MANYCORE to handle the data
transfer. Additionally, the MANYCORE is composed of
16 computing cluster with a private Floating-Point Unit
(FPU) and Memory Management Unit (MMU), a smart
Direct Memory Access (DMA), an own memory and a
debug support unit (cf. Kalray 2013).

Every computing cluster is composed of 16 cores with the
following features (cf. Kalray 2013):

1. one Branch/Control Unit,
2. two Arithmetic Logic Units,
3. one Load/Store Unit including simplified Arithmetic

Logic Unit (ALU),
4. one Multiply-Accumulate (MAC) / FPU including

a simplified ALU,
5. standard IEEE 754-2008 FPU with advanced Fused

Multiply-Add (FMA) and dot product operators,
6. one MMU,

50

password else the corresponding hash chain with x as
input has to be built and every output must be compared
with all saved values finaloutput. (cf. Hellmann 1980)

An optimisation of hash chains are the rainbow tables.
Instead of calculating every chain with the same function
R a set of t – 1 reducing functions will be used. This
reduces the number of collisions in a table. With this
algorithm it is only necessary to compare all finaloutput to
detect collisions. Thus rainbow tables can be used to
generate merge-free tables. This reduces the necessary
storage and the computation time. (cf. Oechslin 2003)

Randomised Attacks on Passwords

The main disadvantage of rainbow tables is that they still
require large amounts of data because there is no way to
give distinct single values higher priorities. The needed
storage grows exponentially with the maximum length of
the passwords x. At the length of 9 characters for a
password more than 1 petabyte is necessary to store the
rainbow table which exceeds the capacity of state of the
art computers. This is only for one salt. For every salt a
new rainbow table has to be computed. Of course it is
possible to compute longer chains to reduce the amount
of memory but this would result in longer computation
times. Since such amounts of storage are way too
expensive and too much time is needed to compute these
rainbow tables, a new approach is required. The following
sections show some measures to reduce the memory
needed. All of them exploit the low-entropy of passwords
created by humans.

Dictionary Attacks

Dictionary attacks are similar to brute force attacks but do
not try all possible combinations of characters. Only
special words are used to crack passwords. The words are
from dictionaries, plain text password lists, etc. This
works because many people use the same password for
different accounts and use words from dictionaries.
According to Alleyne the English language contains about
1,000,000 words (cf. Alleyne 2010). To give an impression
of the computing power of a state of the art computer it
must be stressed that with only one computer it is
possible to crack a password consisting of one of these
English words and hashed with Secure Hash Algorithm
512 (cf. NIST 2015) in about 0.01s (cf. Hashcat 2013).

The downfall of this kind of attacks is that passwords
which are not in the dictionary, cannot be cracked. If
someone uses the same password with one different
character for every account, the passwords are safe
against this type of dictionary attacks. Another
disadvantage is that dictionary cannot be stored as
efficiently as rainbow tables. That strongly limits the
maximum size of the dictionary (cf. Ziegler 2014,
p. 22–25).

given hash function. For practical applications it must be
unfeasible to find such collisions.

Password protection

To protect plaintext passwords against unauthorized
access, these are always stored as hash values. To verify
the user input for the password xʹ, the given input is
hashed to yʹ and then compared with the saved password
hash y.

Figure 5: Save and Verify Passwords

To increase the entropy of a password a random string will
be added to the password and in the next step the
password hash will be generated. The random string is
called salt and will be saved in plain text with the
password. This increases the time for precomputation of
the password hashes. However, salts are meant to make
brute force attacks much harder if not unfeasible.

Rainbow tables

The default attack against hashes is to compute many
hashes and compare them with the target password hash.
With “rainbow tables” it is not necessary to save all
hashes with all plain texts.

The best practice to save memory is to compute hash
chains. A hash chain is formed by computing the hash
value of the input, reducing the output with the function
and taking this value to repeat the procedure.

input → output → newinput → newoutput → ...
 → finaloutput

Calculating this chain, it is only necessary to save the
input and the finaloutput. To crack passwords one has to
compute many chains. If one wants to retrieve a
corresponding plaintext to password x, it is necessary to
compare it with all finaloutput. If it matches, the
corresponding plaintext is used to compute the final

H R H R

R

51

Real-world attacks against cryptographic hash
functions

Optimized Code for Kalray

Two different programs, both running on the Kalray
Developer platform, have been developed.

Password-List

The first program computes hash values based on a
pre-defined list of passwords. To crack a password it is
only necessary to compare the target hash with the
computed list of hashed passwords. If there is a match, it
allows to calculate the position of a corresponding plain
text. The concept of this tool provides one program on the
host processor with different threads to read and write a
file from storage, one program on “PCI0” to handle data
input from the cluster, one program on “PCI1” to handle
data output from the cluster and one program that will be
spawned on all 16 Cluster cores.

The read thread runs on the main CPU and reads data
from the storage and sends them to PCI0. The write thread
also runs on the main CPU and receives all data from the
program that runs on PCI1 and writes them to the storage.
This construct is necessary for fast handling a huge
amount of passwords.

The two threads can alternatingly read and write data and
between the read/write section they can send/receive
data from the cluster. For this reason it is possible to get
the maximum IO-speed concerning to the HDD bottleneck.
To get the maximum speed between the main CPU and the
cluster, the best way is to use both PCIe interfaces. So
PCI0 is used to read data from read thread and pass them
on to the cluster. PCI1 is used to read data from cluster
and send them to the host.

Every cluster gets only a part of every data set. The
cluster main cores split these parts of the data set and
send them to every core. The single cores compute the
result and if all clusters have finished, the result will be
returned to PCI1. Figure 6 shows the sequence diagram of
the data flow:

Markov chains

Markov Chains are used to describe a sequence of
characters using a transition matrix P. With a list of plain
text passwords it is possible to create a matrix P that
contains the transition probability of every character from
the list. Using the matrix P it is possible to create many
passwords with a high probability.

Using Markov chains to describe passwords

The “RockYou” password list, which was used for our
work, was chosen because it is the biggest password list
that is publicly available (cf. Miessler 2013).

Let X be a set of passwords with cardinality |X | = N. If
every user chose a random password of the set , it would
make no sense to create a Markov chain because every
symbol would occur with the probability of occurrence
1/N and also every Markov property would be 1/N.
Computing Markov chains only makes sense if the user
does not choose actually random passwords. If Markov
chains should be used for password cracking it is
necessary to prove the lack of randomness for the
considered passwords. We found out that based on a
8-bit character map only 214 of 256 characters are picked
for passwords by the users (so only about 80 %).
Therefore the passwords cannot really be random. The
probability of occurrence shows that from the set of used
symbols only a small proportion appears regularly. This
confirms the assumption that passwords are not randomly
chosen because the picked characters are not uniformly
distributed.

We found two big bursts, which correspond to the
numerals 0…9 and the lower case letters a…z. The lower
case letters are similarly distributed like they are in
English (cf. Bauer, p. 304). The reason is that the rockyou.
com website is an English one with mainly English-
speaking visitors. The rest of the characters are not
similar to the English language.

To give a résumé: passwords are not uniformly distributed
and they are not based solely on a language. Therefore,
there are passwords that occur with a higher probability
than others. These passwords can be described using
Markov chains.

We also found out that the Markov chains differ for
different password lengths. That is why it seems
reasonable to compute different Markov chains for
different password lengths. Finally, Markov chains differ
between position transitions. But this effect decreases
with the size of passwords.

52

Markov-Cracker

This Application is based on the findings of section “Using
Markov chains to describe passwords”.
Markov-Cracker works with Markov chains for every
password length. Markov chains are used to describe the
probabilities of transitions between characters and their
subsequent characters. A list of start values is needed for
every password length. The input data must be saved in
Octave’s text data format. This format allows it to easily
manipulate or to create input data with Octave or MATLAB
respectively.

This algorithm does not depend on the hash algorithm.
The output of the application is only on the system
console and shows the target hash and a corresponding
plain text password.

Markov-Cracker starts with the shortest password size
and loads the necessary data to the cores. The passwords
are created on the fly on the cores based on the Markov
chains. Due to load balancing aspects, the PCI-OS sends
only one start value to every cluster. If one cluster has
finished, the PCI-OS will send the next one. The start
values will be distributed in descending order of
probability. On the cluster every single core gets the start
value from the PCI-OS and gets a unique character which
is calculated with the start value and the first Markov
chain. Based on these values, every core iterates the
following characters according to the Markov chains. For
every iteration the corresponding hash is calculated and
compared to the target passwords. If one hash is equal to
a target password hash, then a corresponding plain text
password and the hash will be printed on the system
console, else a new password will be iterated. The
iteration starts with the most probable character and ends
with the least probable character. This probability-
depending order and load balancing ensure that every
core is busy and computes the passwords with the
highest probability first.

The performance of the program is again measured in

The time starts with reading the first password and stops
with finishing writing. The code is completely written in
“C” and compiled with the GNU Compiler Collection (GCC)
with optimization level 3 (-O3).

MD5 crypt_SHA512

kH/s ~ 132864.0 ~ 2.8

In comparison to the first program, this one uses less
memory. Only the size for the Markov chains and the start
values are necessary. Another advantage is that the
passwords only exist on the cores and it is not necessary

KiloHash
seconds

Figure 6: Sequence diagram

The architecture of the program does not depend on the
password hash algorithm. There are two implementations,
one for MD5 (cf. Rivest 1992) as a “best-case”1 example,
based on the short runtime. The other one uses crypt, the
default hashing routine for Linux operating systems, with
SHA512 as a real world example. crypt is also a “worst-
case” scenario because it is very time-intensive.

The performance of those two applications is measured in

The time starts with reading the first password and stops
with finishing writing. The code is written in “C” and
compiled using the GNU Compiler Collection (GCC)2 with
optimization level 3 (-O3). The table below shows the
average computing performance of the Kalray Developer
platform.

MD5 crypt_SHA512

kH/s ~ 1593.3 ~ 2.8

The pros of the application are: The architecture of this
application is not depending on the hash algorithm or the
input data. It is possible to work with big password lists
(bigger than the size of RAM). It is possible to pre-
compute lists of hashed passwords to attack multiple
passwords with the same salt.

The cons of this application are: This kind of computing
password hashes works much faster on GPUs. This is due
to the greater number of cores on a GPU and the fact that
disadvantages like SIMT and SPMD of the GPU do not
affect the result. The applications execute the same code
on every core and only the input differs (correspond to
SPMD) and the code does not contain jumps that are not
simultaneously on every core (correspond to SIMT).
Another disadvantage are the read- and write instructions
on the host system which are time-intensive. The reason
is that the data must be transferred to the cluster over
two more OSs3. This is a very time-intensive process.

KiloHash
seconds

53

target does not use a high probability (and therefore
weak) password.

Brute force attacks against passwords with characters
picked from a large set of characters are too time-
intensive. Rainbow tables are much faster than brute force
attacks but these kinds of attacks is too slow and too
memory-intensive as well. These attacks are outdated for
passwords generated by humans. This is shown by
current projects like Hashcat4 or John the Ripper5 which do
not support rainbow tables.

Attacks based on password statistics are much faster
because they only use relevant passwords. Attacks based
on Markov chains do not need much memory and they are
very effective against the most common passwords.
Password lists can be used to iterate personal information
or the top 1000 of the most frequently used passwords. If
the password is random and the characters uniformly
distributed, only rainbow tables or brute force attacks are
possible. Unfortunately, people still are too careless with
their passwords and that is why attacks like those based
on Markov chains are more often successful than not.

To practically crack passwords, powerful hardware is
necessary. GPUs are state of the art for password
cracking, they allow massive parallelisation and speed up
the hash calculation. Also hash algorithms with high
memory usage like scrypt are no problem, because
modern GPUs have much memory with high bandwidth
(GDDR5, HBM). If hash functions become more complex,
multi-core CPU might come more into consideration, but
today multi-core CPUs are of less importance regarding
password cracking. The number of cores (256) of the
multi-core MPPA-256 is too low and they are also clocked
with a low clock rate (400 MHz). In comparison a GPU
Radeon HD 6950 (AMD) has 1408 streaming processing
units (one core on a GPU) distributed (divided) on
22 processors, and a GPU clock speed of 810 MHz.
The difference between the benchmarks of MPPA 256 and
a benchmark with oclHashcat shows the performance
difference. MD5 is approximately 2600 % faster on a GPU
with oclHashcat than on MPPA-256 with Markov-Cracker
and SHA512-crypt is about 600 % faster on a GPU.

to transfer or save them. Finally, the most probability
passwords are tested first.

A disadvantage is that Markov chains make only sense
with not random, uniform distributed passwords. Also
a negative aspect is that it is not possible to try specific
words as a password, for example words which describe
the personal background of the target user (and in this
way using hints gained from social engineering).

Comparison

The main difference between Password-List and Markov-
Cracker is the performance. Cracking MD5 is 82 % faster
with Markov-Cracker than with Password-List. This is
based on the fact that cracking on MPPA Developer is only
limited through the number of available passwords per
time. Markov-Cracker creates with iteration of Markov
chains much more passwords per time than Password-List
can load from the host storage. The performance
difference between the two applications for
crypt_ SHA512 is vanishingly small. That is because
cracking crypt_SHA512 is limited by the CPU performance
and the password rate is irrelevant.

Markov-Cracker is the more powerful tool, based on the
performance and the flexibility of the Markov-Chains.
Password-List has one use case if personal information
about the target are available from social engineering etc.
which might have been used in its passwords. It is
possible to try only this information.

Conclusion

Functions which create password hashes must be more
than simple one-way functions with a high collision
resistance. They must defy attacks using huge amount of
available memory and massive parallelisation. Scrypt, for
example, increases the cost of password cracking with
high memory usage (cf. Percival 2012). To increase the
computation time, the password will be hashed several
times. Another way to increase the computation time is to
salt every password, it makes rainbow tables senseless.
These techniques make an attacker’s job to crack the
passwords much harder, but unfortunately only if the

Endnotes

1. From the Crackers point of view

2. https://gcc.gnu.org/

3. One on the processor behind the interface and the other on the Cluster

4. https://hashcat.net

5. http://www.openwall.com/john/

54

Bibliography

Alleyne, Richard. 2010. English Language Has Doubled in Size in the Last Century. http://www.telegraph.co.uk/techno-
logy/internet/8207621/English-language-has-doubled-in-size-in-the-last-century.html.

Bauer, Friedrich L. 2000. Entzifferte Geheimnisse: Methoden und Maximen der Kryptologie. Springer-Verlag, Heidelberg,
3 edition.

Beierlein, Thomas and Olaf Hagenbruch. 2011. Taschenbuch Mikroprozessortechnik. 4th ed. München: Carl Hanser
Verlag.

Dinkla, Jörn. 2013. Massiv Parallel. iX Developer, no. 1.

Hashcat. 2013. Performance. http://hashcat.net/oclhashcat/.

Hellmann, Martin E. 1980. A cryptanalytic time-memory trad-off. IEEE Transactions On Information Theory, 26(4).

Kalray. 2012. MPPA DEVELOPER. http://www.kalrayinc.com/IMG/pdf/FLYER_MPPA_DEVELOPER.pdf.

Kalray. 2013. MPPA MANYCOR. http://www.kalrayinc.com/IMG/pdf/FLYER_MPPA_MANYCORE.pdf.

Menezes, Alfred J. and Paul C. Van Oorschot and Scott A. Vanstone and R. L. Rivest. 1997, Handbook of Applied Crypto-
graphy. 1st ed. CRC Press.

Miessler, Daniel. 2013. “Rockyou-Withcount.txt. https://github.com/danielmiessler/SecLists/blob/master/Passwords/
rockyou-withcount.txt.

NIST. 2015. Secure Hash Standard. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.

Oechslin, Philippe. 2003. Making a faster cryptanalytic time-memory trad-off. Proceedings of Crypto’03.

Percival, Colin. 2012. Stronger Key Derivation via Sequential Memory-Hard Functions.

Rivest, Ronald L. 1992. The MD5 Message-Digest Algorithm. https://www.ietf.org/rfc/rfc1321.txt.

Thies, Klaus-Dieter. 2008. Echtzeit-Multitasking. 4th ed. Aachen: Shaker Verlag GmbH.

Ziegler, Manuel. 2014. Web Hacking: Sicherheitslücken in Webanwendungen – Lösungswege Für Entwickler. 1st ed.
München: Carl Hanser Verlag.

Tilo Fischer

Ostbayerische Technische
Hochschule (OTH) Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik
Laboratory for Safe and Secure Systems (LaS³)
Kaiser-Wilhelm-Ring 23
92224 Amberg

ti.fischer@oth-aw.de

Kontakt:

Prof. Dr. Andreas Aßmuth

Ostbayerische Technische
Hochschule (OTH) Amberg-Weiden
Fakultät Elektrotechnik, Medien und Informatik
Laboratory for Safe and Secure Systems (LaS³)
Kaiser-Wilhelm-Ring 23
92224 Amberg

a.assmuth@oth-aw.de

	Vorwort
	Digitalisierung
	Industrie-4.0-Technologie-
Demonstrator für
Forschung, Entwicklung
und Lehre
	Andreas Fuchs, M.Sc.
	Prof. Dr.-Ing. Hans-Peter Schmidt

	Applied machine learning: predicting behaviour of
industrial units from
climate data
	Prof. Dr. Dieter Meiller

	Analysis of the Internet
Security Protocol TLS
Version 1.3
	Ahmed Alqattaa
	Prof. Dr. Andreas Aßmuth

	Globalisierung und
IT-Services – Trends im
IT-Outsourcing
nach Mexiko
	Prof. Dr. Frank Schäfer
	Dipl.-Kffr. Cornelia Schäfer

	Energie und Mobilität
	Bewertungskriterien für die Effizienz, den Primärenergieverbrauch und die
CO2-Emissionen für
Kältetechnologien in
der Industrie
	Prof. Dr.-Ing. Markus Brautsch
	Raphael Lechner, M.Sc.
	Matthias Koppmann, M.Eng.
	Tom Goßner, B.Eng.

	Aufbau eines CAE-
Prozesses für die
Simulation verbrennungsmotorischer KWK-Anlagen
	Prof. Dr.-Ing. Stefan Beer
	Prof. Dr.-Ing. Markus Brautsch
	Raphael Lechner, M.Sc.
	Daniel Hummel, M.Sc.
	Max Becker, M.Eng.
	Tom Goßner, B.Eng.
	Peter Stüber, B.Eng.

	Sicherheitsprobleme und
-herausforderungen beim
autonomen Fahren
	Nicholas Jäger
	Prof. Dr. Andreas Aßmuth

	Kommunikation zwischen
Fahrzeug und Server
beim kooperativen
hochautomatisierten
Fahren im Projekt
Ko-HAF
	Josef Schmid M.Sc.
	Prof. Dr.-Ing. Alfred Höß

	EU-Forschungsprojekt „3Ccar“ – Elektrofahr-
zeuge der nächsten
Generation
	Sebastian Wieland, B.Eng.
	Stefan Stiegler, B.Eng.
	Heike Lepke, M.Eng.
	Prof. Dr.-Ing. Alfred Höß

	Die Aerodynamik am
Rennwagen der OTH
Amberg-Weiden
	Christian Fröhlich (Maschinenbaustudent)
	Prof. Dr.-Ing. Horst Rönnebeck

	Information und Kommunikation
	Modellierung der Datenübertragung für den
Einsatz in industriellen
Kommunikationssystemen
	Alexander Gercikow, M.Eng.
	Maximilian Bauer, M.Sc.
	Andreas Fuchs, M.Sc.
	Prof. Dr.-Ing. Hans-Peter Schmidt

	Programmierbare
Systeme für Intelligenz
in Automobilen
	Prof. Dr.-Ing. Alfred Höß
	Josef Schmid, M.Sc.

	PROFINET –
Einsatzszenarien
und Kompetenzen
in Entwicklung und
Zertifizierungen
	Tristan Schönfelder, M.Sc.
	Julian Rost, M.Sc.
	Benedikt Etzold, M.Sc.
	Alexander Gercikow, M.Eng.
	Prof. Dr.-Ing. Hans-Peter Schmidt

	Einsatzmöglichkeiten von Low-Cost-Mikro-Rechner „Raspberry Pi“ im
industriellen Umfeld:
Raspberry Pi als
PROFINET-IO-
Device
	Sebastian Schaffenroth, M.Eng.
	Sebastian Zach, M.Sc.
	Prof. Dr.-Ing. Hans Peter Schmidt

	Lebenswissenschaften und Ethik
	Modulation of itch in the brainstem monitored by fMRI compared to pain
	Prof. Dr. Ralf Ringler
	Prof. Dr. Clemens Forster

	Biomechanische
Validierung eines
gerontologischen
Testanzugs
	Irina Leher, B.Eng.
	Christopher Fleischmann M.Sc.
	Moritz Wachtler B.Eng.
	Prof. Dr. med. Stefan Sesselmann

	Kompetenzzentrum
Gesundheit im
ländlichen Raum
(KZGLR)
	Prof. Dr. rer. pol. Steffen Hamm
	Prof. Dr. med. Clemens Bulitta

	Transfer und Innovation
Ostbayern – Medical
Innovation Laboratory
	Sabrina Reiml, M.Sc.
	Christine Katharina Raps, M.Sc.
	Anna Hautmann, M.Sc.
	Karina Schuller, M.Sc.
	Dr. Matthias Schöberl
	Prof. Dr. med. Clemens Bulitta

	Transferdimensionen: von der Praxis in die Hochschule und von
der Hochschule in
die Praxis
	Katharina Koller, M.A.
	Anja Wurdack, M.A.

	Probit Models
and the Global
Business Cycle
	Ursel Baumann
	Ramón Gómez Salvador
	Prof. Dr. Franz Seitz

	Hygiene und Medizintechnik – Management und technische Lösungen für
hygienerelevante Oberflächen im klinischen
Umfeld
	Dr. rer. nat. Sebastian Buhl
	Alexander Stich, M.Sc.
	Sabine Gruber, B.Eng.
	Jeannine Vogt, B.Eng.
	Prof. Dr. med. Clemens Bulitta

	Über Vielfalt wird
gesprochen, gelebt
wird Monotonie
	Ibrahim Devrilen
	Christina Stigler
	Charlotte Schlodder
	Marcella Wallis
	Katharina Stör
	Catarina Cook
	Dr. Gabriele M. Murry

	Für den ersten Eindruck gibt es keine 2. Chance!
	Oberpfälzer Karrierewebseiten auf dem
Prüfstand
	Ibrahim Kaçmaz, M.A.
	Dr. Gabriele M. Murry

	Produktion und Systeme
	Untersuchung zum
System on Chip (SoC) –
Ansatz für digitale
Wechselrichter
	Prof. Dr.-Ing. Bernhard Frenzel

	Transiente und stationäre
CFD-Simulationen von
Luftschleieranlagen
	Prof. Dr. Franz Magerl

	Kann der Vergleich zweier
Konfidenzintervalle einen Zweistichprobentest
ersetzen?
	Prof. Dr. Benjamin R. Auer
	Prof. Dr. Horst Rottmann

	Prüfstand
Photomultiplier:
Funktionstest für
„refurbished
systems“
	Jonas Habrich, B.Eng.
	Agnes Pöllmann, M.Sc.
	Leonhard Ruppert, B.Eng.
	Theresa Maiß, B.Eng.
	Prof. Dr. Ralf Ringler

	Spritzprägen mikrostrukturierter Oberflächen in der
Medizintechnik
	Dr. Bernhard Schmitt
	Prof. Dr.-Ing. Tim Jüntgen

	Sensorik
	Geschützte Referenzelektroden für
pH-Sensoren mit
Metalloxiden
	Josef Schottenbauer, B.Eng.
	Sebastian Chalupczok, M.Eng.
	Dipl.-Phys. Christian Schell
	Prof. Dr. Peter Kurzweil

	Chemische Analytik von Fetten und Ölen:
Charakterisierung
umweltverträglicher
Trafoöle
	Dipl.-Phys. Christian Schell
	Verena Brandl, B.Eng.
	Josef Schottenbauer, B.Eng.
	Prof. Dr. Peter Kurzweil

	Mass spectroscopy of decomposition products in double-layer
capacitors during
lifetime testing
	Prof. Dr. Peter Kurzweil
	Dipl.-Phys. Christian Schell

	A tissue-equivalent
phantom for detection of
malfunctions of active
medical implants and
electronic devices
due to ionizing
radiation
	Larissa Blümlein, M.Sc.
	Manuel Stich, M.Sc.
	Anne Slawig, M.Sc.
	Prof. Dr. Ralf Ringler

	Magnetfelderfassung
von Schaltlichtbögen
in Niederspannungsschaltgeräten
	Matthias Meier, B.Eng.
	Christian Reil, M.Eng.
	Prof. Dr.-Ing. Hans-Peter Schmidt

	Optische Kohärenztomografie in der Medizintechnik: ein System für
Forschung sowie Lehre
und Ausbildung in
Technischer Optik
und Lasersysteme
	Stefan Hofmeister, B.Eng.
	Agnes Pöllmann, M.Sc.
	Prof. Dr. Ralf Ringler

	Inserentenverzeichnis
	Impressum

